

次世代蓄電池を実現するルチル型酸化チタン負極材料

鳥取大学 工学部 化学バイオ系学科 薄井洋行

〒680-8552 鳥取市湖山町南4-101 TEL:0857-31-5634 E-mail:usui@tottori-u.ac.jp

研究の目的

脱炭素社会の実現に向けて,再生可能エネルギーの有効利用が求められており,電気自動車用電池や定置用蓄電池の高性能化と低コスト 化が急務となってきている.

ルチル型酸化チタンは安価で資源豊富な素材であるため,リチウム イオン電池(LIB)の負極材料に適用できれば非常に有意義である.た だし,電子伝導性に乏しいうえに,Litの拡散方向が一次元方向に限定 される等の課題を抱えていた.研究代表者はこれまでに,ルチル型TiO2 の単結晶化や不純物ドープなどの独自の発想に基づく工夫によりこの 理解するにし、したの独自の表したマニレキュ 課題を克服し、LIB負極性能を大幅に改善できることを示してきた。

一方,ルチル型TiO2のナトリウムイオン電池(NIB)負極への適用に も取り組んできている、NIBはLIBと同様に一価のカチオンが活物質に 吸蔵されることで充放電を行う蓄電池である、南米に偏在するLi資源に 対し、Na資源は安価で入手容易なため、NIBは大型の蓄電池への利用が 期金されている。またし、またにもよりNIBは大型の蓄電池への利用が 期待されている.ただし、Litよりも大きいNatを高速で吸蔵・放出できる負極活物質の探索が課題となっている.

	地殻存在度 /ppm	原料価格 /\$t ⁻¹	原子量	イオン半径 / pm	リチウムイオン 憲池(LIB) 教室 上i・
LI	20	150	6.9 23	102	法物質 ナトリウムイオ → Na ⁺ → Na ⁺
INCI	20000	150	25	102	ン電池(NIB)

材料の新規性 ルチル型TiO2負極の特徴 Rutile TiO LITIO

	4.15012	
原材料	Li ₂ CO ₃ , TiO ₂	FeTiO ₃
主な製法	固相反応法	硫酸法
取引価格 (1kgあた り)	約1万円	約1000円
密度 / g cm ⁻³	3.48	4.23
Li⁺拡散係数 / cm² s ^{−1}	10 ⁻¹⁵ -10 ⁻¹¹	10⁻⁶(c軌) 10 ⁻¹⁴ (ab面 内)
充放電電位 / V vs. Li/Li*	1.55-1.60	1.1-1.5
電子伝導性 / S cm⁻¹	10 ⁻¹³	10 ⁻¹³
理論容量 / mA h g⁻¹	175	335
Li吸蔵時の 体積膨張率	0.2%	16%

ルチル型TiO₂の問題点である乏しい電子伝導性を克服するために、Nb⁵⁺やTa⁵⁺などの不純物元素 をドープを検討するとともに、Cu²⁺やNi²⁺などの価数の低い元素のドープによる酸素欠損の導入を 実施した.また、Li+やNa⁺はルチル構造のc軸方向に非常に拡散しやすいが、結晶粒界でその拡散 が遮られてしまうため、結晶性を高めて単結晶とし、一次粒子の長さを短くすることで粒子内部に までイオンを吸蔵しやすい形状の構築を試みた、さらに、二次粒子の形状にも工夫を加え、単結晶 ノ
粒子が凝集した多孔質体とすることで比表面積を増大させ,反応面積を広げることで充放電特 性の改善を図った

TI

T

T

